The Complex-symplectic Geometry of Sl(2,c)-characters over Surfaces

نویسنده

  • WILLIAM M. GOLDMAN
چکیده

The SL(2,C)-character variety X of a closed surface M enjoys a natural complex-symplectic structure invariant under the mapping class group Γ of M . Using the ergodicity of Γ on the SU(2)-character variety, we deduce that every Γ-invariant meromorphic function on X is constant. The trace functions of closed curves on M determine regular functions which generate complex Hamiltonian flows. For simple closed curves, these complex Hamiltonian flows arise from holomorphic flows on the representation variety generalizing the Fenchel-Nielsen twist flows on Teichmüller space and the complex quakebend flows on quasiFuchsian space. Closed curves in the complex trajectories of these flows lift to paths in the deformation space CP(M) of complexprojective structures between different CP-structures with the same holonomy (grafting). If P is a pants decomposition, then the trace map τP : X −→ C defines a holomorphic completely integrable system. Furthermore, if ΓP is the subgroup of Γ preserving P , then every ΓP-invariant holomorphic function X −→ C factors through τP . This holomorphic integrable system is related to the complex Fenchel-Nielsen coordinates on quasi-Fuchsian space QF(M) developed by Tan and Kourouniotis, and relate to recent formulas of Platis and Series on complex-length functions and complex twist flows on QF(M).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proceedings of the Arnoldfest SYMPLECTIC GEOMETRY ON MODULI SPACES OF HOLOMORPHIC BUNDLES OVER COMPLEX SURFACES

We give a comparative description of the Poisson structures on the moduli spaces of at connections on real surfaces and holomorphic Poisson structures on the moduli spaces of holomorphic bundles on complex surfaces. The symplectic leaves of the latter are classiied by restrictions of the bundles to certain divisors. This can be regarded as xing a \complex analogue of the holonomy" of a connecti...

متن کامل

Symplectic Geometry on Moduli Spaces of Holomorphic Bundles over Complex Surfaces

We give a comparative description of the Poisson structures on the moduli spaces of flat connections on real surfaces and holomorphic Poisson structures on the moduli spaces of holomorphic bundles on complex surfaces. The symplectic leaves of the latter are classified by restrictions of the bundles to certain divisors. This can be regarded as fixing a “complex analogue of the holonomy” of a con...

متن کامل

Lectures on the Sl(2,r) Action on Moduli Space

Suppose g ≥ 1, and let α = (α1, . . . , αn) be a partition of 2g− 2, and let H(α) be a stratum of Abelian differentials, i.e. the space of pairs (M,ω) where M is a Riemann surface and ω is a holomorphic 1-form on M whose zeroes have multiplicities α1 . . . αn. The form ω defines a canonical flat metric on M with conical singularities at the zeros of ω. Thus we refer to points of H(α) as flat su...

متن کامل

Lectures on the Sl(2,r) Action on Moduli Space

Suppose g ≥ 1, and let α = (α1, . . . , αn) be a partition of 2g− 2, and let H(α) be a stratum of Abelian differentials, i.e. the space of pairs (M,ω) where M is a Riemann surface and ω is a holomorphic 1-form onM whose zeroes have multiplicities α1 . . . αn. The form ω defines a canonical flat metric on M with conical singularities at the zeros of ω. Thus we refer to points of H(α) as flat sur...

متن کامل

Investigation of Effective Parameters of the Two-Layer Sheet Hydroforming Process for Hollow Parts with Complex Geometry

AbstractHydroforming process is a deep stretching process only with the difference that a fluid is used instead of the mandrel. This paper investigates the hydroforming process of non-cylindrical and non-spherical geometries using finite element analysis software to calculate the influences of effective process parameters such as the coefficient of friction between the surfaces and the pressure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003